after recrystallization from hexane gave $\mathrm{mp} 195-197^{\circ} \mathrm{C} ;[\alpha]^{32} \mathrm{D}+17.5^{\circ}$ (c 0.78, $\mathrm{CHCl}_{3}$ ); IR ( KBr ) 2998, 2920, 2830, 1693, 1588, 1423, 1407, $1316,1141,1092,1068,899,863,789,713 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \tau 3.58$ $(\mathrm{s}, 4 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 6.50-7.97(\mathrm{~m}, 16 \mathrm{H}), 8.10-8.85(\mathrm{~m}, 4 \mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{2}$ : C, 83.20; H, 7.56. Found: C, 83.57; H, 7.46.
$(+)$-[8]-Bridged [2.2]Paracyclophane (19) (from 24). The bis(ethanedithiol) 24b was prepared by the method described for the preparation of 13 , utilizing 24 a ( $100 \mathrm{mg}, 0.29 \mathrm{mmol}$ ), acetic acid ( 15 mL ), ethanedithiol ( 3 mL ), and $47 \%$ borontrifluoride ( 1 mL ). To a solution of crude $\mathbf{2 4 b}(0.14 \mathrm{~g})$ in ethyl acetate ( 15 mL ) was added W-5 Raney nickel ( 0.5 g ). Refluxing followed by removal of the Raney nickel and concentration gave a solid which was subjected to alumina column chromatography. Elution with hexane-benzene gave 19:mp $135-136{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}+33.2^{\circ}\left(\mathrm{c} 0.84, \mathrm{CHCl}_{3}\right)$.
Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30}$ : C, $90.50 ; \mathrm{H}, 9.50$. Found: $\mathrm{C}, 90.44 ; \mathrm{H}$, 8.54 .

Registry No.-(S)-(+)-4, 54059-74-4; (R)-(-)-5, 36757-10-5; $( \pm)-6 \mathbf{b}, 63534-00-9 ;(+)-6 \mathbf{b}, 63534-01-0 ;( \pm)-6 \mathbf{c}, 63534-02-1 ;( \pm)-6 \mathbf{c}$ DNP, 63534-03-2; ( $\pm$ )-6d, 63534-04-3; (S)-(+)-6d, 63597-46-6; (S)( + )-6d ( + )- $\alpha$-( $\beta$-naphthylethylamine), 63597-47-7; ( + )-6e, 63534-05-4; (-)-6f, 63534-06-5; (+)-6g, 63534-07-6; ( $\pm$ )-7a, 63534-08-7; (-)-7b, 63534-09-8; 8a, 1197-60-0; 8b, 32543-06-9; ( $\pm$ )-9, 63534-10-1; (-)-10, 63597-48-8; ( $\pm$ )-11, 5088-46-0; (+)-12, 63534-11-2; ( $\pm$ )-13, 63534-12-3; ( $\pm$ )-14a, 36659-11-7; (-)-14a, 63534-13-4; ( $\pm$ )-14b, 36659-12-8; ( $\pm$ )-14b DNP, 63534-14-5; ( $\pm$ )-14c, 63534-15-6; ( - )-14c, 36659-13-9; (-)-14c brucine, 63534-16-7; (-)-14d, 36757-09-2; (+)14e, 36659-14-0; (+)-14f, 36659-16-2; ( $\pm$ )-14g, 63534-17-8; $R-(-)-14 \mathrm{~h}$, 63534-18-9; (-)-15, 36659-18-4; (+)-16, 63597-49-9; (-)-17, 36659-19-5; (-)-18, 36659-20-8; (+)-19, 63534-19-0; (S)-(+)-21a, 63534-20-3; ( + )-22, 63534-21-4; ( $S, S$ )-( + )-23, 36659-04-8; ( + )-24a, 63534-22-5; $(+)-24 \mathbf{b}, 63534-23-6 ;(+)-\alpha$-( $\beta$-naphthyl)ethylamine, 3906-16-9; brucine, $357-57-3 ; p$-xylyltrimethylammonium bromide, 16814-214.

## References and Notes

(1) Presented at the 25th Annual Meeting of the Chemical Society of Japan, Tokyo, April, 1972, and a portion of this research has been reported in preliminary form: M. Nakazaki, K. Yamamoto, and M. Itoh, J. Chem. Soc., Chem. Commun., 434 (1972); M. Nakazaki and K. Yamamoto, Chem. Lett., 1051 (1974).
(2) M. Nakazaki and K. Chikamatsu, Abstracts II, p 670. The 34th Annual Meeting of the Chemical Society of Japan, Tokyo, April, 1976.
(3) M. Nakazaki, K. Naemura, and S. Harita, Bull. Chem. Soc. Jpn., 48, 1907 (1975).
(4) For a general survey on this subject, see M. Farina and C. Morandi, Tetrahedron, 30, 1819 (1974).
(5) K. Adachi, K. Naemura, and M. Nakazaki, Tetrahedron Lett., 5467 (1968).
(6) M. Nakazaki, K. Yamamoto, and S. Tanaka, J. Chem. Soc., Chem. Commun., 433 (1972); M. Nakazaki, K. Yamamoto, S. Tanaka, and H. Kametani, J. Org. Chem., 42, 287 (1977).
(7) According to Smith's nomenclature: B. H. Smith, "Bridged Aromatic Compounds', Academic Press, New York, N.Y., 1964, p 13.
(8) M. Nakazaki, K. Yamamoto, and S. Tanaka, Tetrahedron Lett., 341 (1971); M. Nakazakl, K. Yamamoto, and S. Tanaka, J. Org. Chem., 41, 4081 (1976).
(9) All structural formulas in schemes are presented in their absolute configurations.
(10) A. T. Blomquist and B. H. Smith, J. Am. Chem. Soc., 82, 2073 (1960); A. T. Blomquist, R. E. Stahl, V. C. Meinwald, and B. H. Smith, J. Org. Chem., 26, 1687 (1961).
(11) D. J. Cram, C. S. Montgomery, and G. R. Knox, J. Am. Chem. Soc., 88, 515 (1966).
(12) H. E. Winberg, F. S. Fawcett, W. E. Mochel, and C. W. Theobald, J. Am. Chem. Soc., 82, 1428 (1960).
(13) M. Nakazaki, K. Yamamoto, and S. Okamoto, Tetrahedron Lett., 4597 (1969); M. Nakazaki, K. Yamamoto, and S. Okamoto, Bull. Chem. Soc. Jpn., 45, 1562 (1972).
(14) H. Falk and K. Schlögl, Angew. Chem., Int. Ed. Engl., 1, 383 (1968); H. Falk, P. Heid-Pohring, and K. Schlögl, Tetrahedron, 26, 511 (1970).
(15) R. S. Cahn, Sir C. Ingold, and V. Prelog, Angew. Chem., Int. Ed. Engl., 5, 385 (1966).
(16) E. Langer, H. Lehner, and K. Schlögl, Tetrahedron, 29, 2473 (1973).

# Synthesis of Methyl dI-Jasmonate and Its Related Compounds from Methyl ( $E$ )- and ( $Z$ )-4,4-Dimethoxy-2-butenoates 

Sigeru Torii,* Hideo Tanaka, and Yuichi Kobayasi<br>Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama, Japan 700

Received April 15, 1977


#### Abstract

A synthesis of methyl $d l$-jasmonate ( $\mathbf{1 b}$ ) and its dehydro derivatives $\mathbf{2 b}$ and $\mathbf{3 b}$ from methyl $(E)$ - and ( $Z$ )-4,4-dimethoxy-2-butenoates (4) is described. Dimethyl 2 -acetyl-3-dimethoxymethylglutarate (5) could be obtained by Michael addition of 4 with methyl acetoacetate in excellent yields. Deacetalization of dimethyl 2 -acetyl-3-di-methoxymethyl-2-(2-pentynyl)glutarate (7a) followed by cyclization with base after alkylation of 5 ( $\mathrm{R}^{\prime}=\mathrm{Me}$ ) with 2-pentynyl bromide afforded 5-methoxycarbonyl-4-methoxycarbonylmethyl-5-(2-pentynyl)-2-cyclopentenone (10a). Reduction of $10\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ with $\mathrm{NaBH}_{4}$ in MeOH giving 2-methoxycarbonyl-3-methoxycarbonylmethyl-2-(2-pentynyl)cyclopentanol (13a) and subsequent oxidation of 13 with chromic acid gave 2 -methoxycarbonyl-3-methoxycarbonylmethyl-2-(2-pentynyl)cyclopentanone (14a), a precursor of $1 \mathbf{b}$. Cis hydrogenation of $\mathbf{7 a} \rightarrow \mathbf{7 b}$, $10 \mathrm{a} \rightarrow 10 \mathrm{~b}, 13 \mathrm{a} \rightarrow 13 \mathrm{~b}$, and $14 \mathrm{a} \rightarrow 14 \mathrm{~b}$ using Lindlar catalyst proceeded in quantitative yields. Direct demethoxycarbonylation of $10 b$ ( $R=2$-cis-pentenyl) with $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NaCl}$ in a sealed tube afforded a mixture of 2 b and 3b. However, acid-catalyzed de-tert-butoxycarbonylation of $\mathbf{1 0 b}\left(\mathrm{R}^{\prime}=t\right.$ - Bu ), prepared from 5 ( $\mathrm{R}^{\prime}=t$-Bu) by alkylation followed with cyclization, under reflux in benzene gave $\mathbf{2 b}$ as a sole product. Hydrogenation of $\mathbf{1 0 a}$ with palladium on charcoal afforded $14 c(R=$ pentyl $)$. The products $2 b$ and $3 b$ could be converted into $1 b$ smoothly.


Our continuing interest in the jasmonoid syntheses ${ }^{1}$ has led to discovering an economically significant method in obtaining methyl $d l$-jasmonate ( $\mathbf{1 b})^{2}$ and methyl dehydrojasmonates ( 2 b and $\mathbf{3 b}$ ) without using troublesome reagents. In the course of our efforts to investigate the electrolysis of 2 substituted furans, we have found an effective, one-step preparative way of methyl ( $E$ )- and ( $Z$ )-4,4-dimethoxy-2butenoates (4). ${ }^{3}$ It should be noted that the butenoates 4 are expected to be a powerful Michael acceptor and they are in-
deed smoothly obtained in good yield by the simple electrolyses of furfuryl alcohol, furfural, and 2 -furoic acid. We now report a straightforword synthesis of the jasmonates $\mathbf{1 b}, \mathbf{2 b}$, and $\mathbf{3 b}$ from 4 via the intermediates $5,7,10,13$, and 14 .

When the butenoates 4 were allowed to react with methyl acetoacetate using alkali metal carbonates in methanol (Table I , runs 1,2 , and 3 ), the yield of $5\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ was in the ranges of $0-35 \%$ yields along with the formation of 6 ( $6-11 \%$ yields). A successful Michael addition of methyl acetoacetate to 4 was

Table I. Constituents of the Michael Adducts of 4 with Methyl Acetoacetate

|  |  |  | Yield of products, \% |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run Substrate |  | Base | Time $(\mathrm{h})$ | $\mathbf{5 ( \mathrm { R } ^ { \prime } = \mathrm { Me } )}$ | $\mathbf{6}$ | $\mathbf{4}^{\boldsymbol{a}}$ |
| 1 | $4(Z)$ | $\mathrm{Li}_{2} \mathrm{CO}_{3}$ | 20 | 35 | 6 | 29 |
| 2 | $4(Z)$ | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | 5 | 22 | 9 | 18 |
| 3 | $4(Z)$ | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | 16 |  | 11 |  |
| 4 | $\mathbf{4}(Z)$ | $\mathrm{KF}_{3}$ | 72 | 97 |  |  |
| 5 | $4(E)$ | KF | 72 | 98 |  |  |

${ }^{a}$ The recovered substrates 4 .

1

$\mathrm{a}: \mathrm{R}=-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CEt}$
b: $\mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH} \stackrel{\text { cis }}{=} \mathrm{CHEt}$
c: $R=-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}$
3


6


8
accomplished in $97-98 \%$ yields by using potassium fluoride in methanol as shown in Table I (runs 4 and 5). In contrast to our results, an earlier report demonstrates that fluoride ion is considered to be a strong base in aprotic solvents because of lack of hydrogen bonding. ${ }^{4}$

Alkylation of $5\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ with pentynyl bromide using potassium carbonate in acetone afforded the desired C -alkylated 7a ( $\mathrm{R}^{\prime}=\mathrm{Me}, 72 \%$ yield) together with the O -alkylated $8 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 27 \%\right.$ yield $)$, whereas the yield of $7 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ increased to $81 \%$ by addition of a catalytic amount of potassium iodide. The products 7a and 8 a could be separated by column chromatography.

An aqueous THF solution of $7\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ was hydrolyzed with $1 \%$ perchloric acid at $26-28^{\circ} \mathrm{C}$, giving $9\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$, and subsequent base-catalyzed cyclization with piperidine-acetic acid in benzene afforded $10\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ in $52-56 \%$ yield (based on 7) after removal of water azeotropically. However, the prolonged heating of the aqueous THF solution of 7a ( $\mathrm{R}^{\prime}=$ Me ) with $3-4 \%$ perchloric acid over $33^{\circ} \mathrm{C}$ provided the lactone derivative 11a preferentially. Cis hydrogenation of $7 \mathrm{a} \rightarrow 7 \mathrm{~b}$, $10 \mathrm{a} \rightarrow 10 \mathrm{~b}, 13 \mathrm{a} \rightarrow 13 \mathrm{~b}$, and $14 \mathrm{a} \rightarrow 14 \mathrm{~b}$ in a mixed solvent of hexane and acetone using Lindlar catalyst ${ }^{5}$ proceeded in quantitative yields.

The hydride reduction of 2 -cyclopenten- 1 -ones ${ }^{6}$ has been well investigated; however, selective 1,4 reduction of the enones has not yet been reported, in contrast to the cases of 2-cyclohexen-1-ones. ${ }^{7}$ The reduction of the mixed products 2 b and $\mathbf{3 b}(5: 1)$ to the diol 12 with 14 equiv of metal lithium in liquid ammonia and subsequent oxidation and esterification, giving 1b, has been discussed by Ducos and Rouessac. ${ }^{8}$ In an effort to ascertain how the double bond in the ring of 10 could



7


10
$\mathrm{H}^{+}$
$\Delta$

$R^{\prime}=M e$, tert $-B u$



15
be selectively reduced, the following several examinations were attempted. Thus, reduction of $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ with 4 equiv of lithium tri-tert-butoxyaluminumhydride ${ }^{6 \mathrm{a}}$ in THF at $5^{\circ} \mathrm{C}$ for 18 h afforded a mixture of $13 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 51 \%\right)$ and $14 \mathrm{~b}\left(\mathrm{R}^{\prime}\right.$ $=\mathrm{Me}, 26 \%$ ) (Table II, run 1). Similarly, reduction of $10 \mathrm{~b}\left(\mathrm{R}^{\prime}\right.$ $=\mathrm{Me}$ ) with 2 equiv of sodium borohydride in methanol and/or in dioxane under reflux for 1 h afforded the alcohol 13 b ( $\mathrm{R}^{\prime}$ $=\mathrm{Me}, 80$ and $41 \%$ yields) (Table II, runs 2 and 3 ). On the other hand, catalytic hydrogenation of $10 b\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ with palladium on charcoal or palladium on barium sulfate in methanol at $24^{\circ} \mathrm{C}$ for 30 min gave $14 \mathrm{c}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$ ) in $88-97 \%$ yields (runs 4 and 5).

The Jones oxidation of both $13 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$, derived from $10 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$, and $\mathbf{1 3 b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ with chromic acid-sulfuric acid in methylene chloride gave the corresponding cyclopentanones 14 a and 14 b in $71-84 \%$ yields, and subsequent demethoxycarbonylation in aqueous dimethylsulfoxide ( $\mathrm{Me}_{2} \mathrm{SO}$ ) containing a small amount of sodium chloride $(\mathrm{NaCl})^{2 \mathrm{~d}}$ in a sealed tube led to the jasmonates $\mathbf{l a - b}$, smoothly.

Methyl dehydrojasmonate (2b), isolated from jasmine absolutes of Italian ${ }^{9}$ and Spanish ${ }^{10}$ jasmines (Jasminum grandiflorum L.), has received considerable attention as new odorous stuff. ${ }^{1 a}$ However, in a synthetical sense, it is lacking

Table II. Reduction of $10 \mathrm{~b}\left(\mathbf{R}^{\prime}=\mathrm{Me}\right.$ ) with Various Reducing Reagents

| Run | Reagent | Sol- <br> vent | Temp,${ }^{\circ} \mathrm{C}$ | Time, h | Yield of products, \% |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 13b | 14b | 14 c |
| 1 | $\begin{aligned} & \mathrm{Li}(t-\mathrm{BuO})_{3^{-}} \\ & \mathrm{AlH} \end{aligned}$ | THF | 5 | 18 | 51 | 26 |  |
| 2 | $\mathrm{NaBH}_{4}$ | Dioxane | 102 | 1 | 41 |  |  |
| 3 | $\mathrm{NaBH}_{4}$ | MeOH | 65 | 1 |  | 80 |  |
| 4 | Pd/C | MeOH | 20 | 0.8 |  |  | 97 |
| 5 | $\mathrm{Pd} / \mathrm{BaSO}_{4}$ | MeOH | 24 | 0.5 |  |  | 88 |

in the literature in obtaining $2 \mathbf{b}$ except for the paper regarding the simultaneous formation of $2 a$ and $3 a$ in the retro-DielsAlder reaction of 3-oxo-4-(2-pentynyl)-5-methoxycarbonyl-methyl-endo-tricyclo[5.2.1.0 $0^{2,6}$ ]-8-decene. ${ }^{8}$ In our experiment, demethoxycarbonylation of $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ in aqueous $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{NaCl}$ in a sealed tube at $170-175^{\circ} \mathrm{C}$ for 4 h afforded a mixture of $\mathbf{2 b}$ and $3 \mathbf{b}(2: 1)^{11}$ in $46 \%$ yield, whereas the cyclopentenone $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right)$, prepared by alkylation of the Michael adduct 5 ( $\mathrm{R}^{\prime}=t-\mathrm{Bu}$ ) followed by cyclization, underwent acid-catalyzed decomposition under reflux in benzene for 20 min , to give pure 2 b in $83 \%$ yield. This reaction condition ${ }^{12}$ may provide thermodynamically stable trans-isomer $\mathbf{2 b}$. Supporting evidence for the configuration of $\mathbf{2 b}$ comes from the results of the ${ }^{13} \mathrm{C}$ NMR spectra of 2 b and 1 l , showing homogeneous peaks in very fine detail, and from the following conversion of $2 b$ to $1 b .{ }^{13}$ Conversion of $2 b$ and/or the mixture 2 b and 3 b into 1 b via 15 was carried out by reduction with sodium borohydride in methanol followed with Jones oxidation. An alternative route to 1 b from $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right)$ via 13 b ( $\mathrm{R}^{\prime}=t-\mathrm{Bu}$ ) and 14b ( $\mathrm{R}^{\prime}=t-\mathrm{Bu}$ ) was also examined in a similar manner to that described for $\mathbf{1 0 b}\left(R^{\prime}=\mathrm{Me}\right)$.

## Experimental Section

Boiling points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were determined at 60 MHz with a Hitachi R- 24 spectrometer and the chemical-shift values are expressed in $\delta$ value ( ppm ) relative to a $\mathrm{Me}_{4} \mathrm{Si}$ internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were taken at 25.05 MHz in the Fourier mode using a JEOL FX-100 spectrometer. Samples were dissolved in $\mathrm{CDCl}_{3}$ containing $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. IR spectra were determined with a Japan Spectroscopic Co. Ltd., IRA-I, infrared recording spectrophotometer fitted with a grating. The mass spectra were obtained with a JEOL Model JMS-OIBM-2, ionizing voltage 75 eV .

Dimethyl 2-Acetyl-3-dimethoxymethylglutarate ( $5, \mathbf{R}^{\prime}=\mathbf{M e}$ ). A mixture of $4(Z)(2.22 \mathrm{~g}, 13.8 \mathrm{mmol}), \mathrm{KF}(2.5 \mathrm{~g}, 43.0 \mathrm{mmol})$, and $\mathrm{AcCH}_{2} \mathrm{CO}_{2} \mathrm{Me}(2.7 \mathrm{~g}, 23.2 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was vigorously stirred for 3 days under reflux. The mixture was allowed to cool to room temperature and the solvent was evaporated in vacuo. The residue was poured into brine and extracted with AcOEt . The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. After removal of the solvents, the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$, benzene-AcOEt, 10/1) to give 5 ( $\mathrm{R}^{\prime}=\mathrm{Me}, 3.69 \mathrm{~g}, 97 \%$ ): bp 88-91 ${ }^{\circ} \mathrm{C}(1.9 \mathrm{~mm})$; ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 2.24\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CO}\right), 2.41-2.64\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{CO}\right), 2.77-3.22(\mathrm{~m}, 1, \mathrm{CH})$, $3.31,3.35\left(2, \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{O}\right), 3.66\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 3.72\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 3.79(\mathrm{~d}$, $1, J=6 \mathrm{~Hz}, \mathrm{CHCO}), 4.38(\mathrm{t}, 1, J=6 \mathrm{~Hz}, 0 \mathrm{CHO})$; IR (neat) 1735 $(\mathrm{C}=0), 1715 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{7}: \mathrm{C}, 52.17 ; \mathrm{H}, 7.30$. Found: $\mathrm{C}, 52.32 ; \mathrm{H}$, 7.40 .

Similarly, upon heating to reflux a mixture of $4(E)$ and Ac$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ in the presence of KF in MeOH afforded $5\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ in $98 \%$ yield.

Dimethyl 2-Acetyl-3-dimethoxymethyl-2-(2-pentynyl)glutarate ( $7 \mathrm{a}, \mathbf{R}^{\prime}=\mathbf{M e}$ ). A mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(2.08 \mathrm{~g}, 15.1 \mathrm{mmol}), 5$ ( $\mathrm{R}^{\prime}=\mathrm{Me}, 553 \mathrm{mg}, 2.0 \mathrm{mmol}$ ), pentynyl bromide ( $320 \mathrm{mg}, 2.18 \mathrm{mmol}$ ), and $\mathrm{KI}(444 \mathrm{mg}, 2.67 \mathrm{mmol})$ in acetone $(30 \mathrm{~mL})$ was stirred at room temperature for 1 h and then refluxed for an additional 12 h . The mixture was allowed to stand to room temperature. The insoluble material was separated by centrifugation and the organic layer was concentrated. The residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$, benzene-
$\mathrm{AcOEt}, 8 / 1$ ) to give $7 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 558 \mathrm{mg}, 81 \%\right.$ ) and $8 \mathrm{a}\left(\mathrm{R}^{\prime}-\mathrm{Me}, 88 \mathrm{mg}\right.$, $13 \%$ ).

The C-alkylation product 7 a boiled at $97-101^{\circ} \mathrm{C}(0.08 \mathrm{~mm}):{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CCl}_{4}$ ) $\delta 1.11\left(\mathrm{t}, 3, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.81-2.26\left(\mathrm{~m}, 5, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right.$, $\mathrm{CH}_{3} \mathrm{CO}$ ), 2.26-2.55 (m, 2, $\mathrm{CH}_{2} \mathrm{CO}$ ), 2.55-2.85 (m, 2, $\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$ ), 2.98-3.48 (m, $\left.7, \mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}\right), 3.61\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 3.65\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right)$, 4.15-4.34 (m, 1, OCHO); IR (neat) $2837\left(\mathrm{CH}_{3} \mathrm{O}\right), 1729(\mathrm{C}=\mathrm{O}), 1710$ $\mathrm{cm}^{-1}(\mathrm{C}=0)$; MS $m / e$ (rel intensity) $342\left(\mathrm{M}^{+}, 0.8\right), 311$ (19), $279(5)$, 267 (37), 221 (16), 219 (17), 207 (13), 191 (8), 181 (5), 161 (10), 160 (24), 130 (19), 101 (20), 91 (7), 75 (100).
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{7}$ : $\mathrm{C}, 59.64 ; \mathrm{H}, 7.65$. Found: $\mathrm{C}, 59.67$; H , 7.76.

The O -alkylation product $8 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ boiled at $85-89^{\circ} \mathrm{C}(0.005$ $\mathrm{mm}):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.13\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.87-2.60\left(\mathrm{~m}, 4, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$ ), $2.29\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{CO}\right), 3.12,3.25\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{O}\right), 3.11-3.78(\mathrm{~m}$, $1, \mathrm{CHC}=\mathrm{C}), 3.55,3.66\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{OCO}\right), 4.41-4.66\left(\mathrm{~m}, 3, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{C}\right.$, OCHO); IR (neat) $2832\left(\mathrm{CH}_{3} \mathrm{O}\right), 1737(\mathrm{C}=\mathrm{O}), 1708(\mathrm{C}=\mathrm{O}), 1619 \mathrm{~cm}^{-1}$ ( $\mathrm{C}=\mathrm{C}$ ) .

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{7}$ : C, 59.64; $\mathrm{H}, 7.65$. Found: $\mathrm{C}, 59.42 ; \mathrm{H}$, 7.44.

Dimethyl 2-Acetyl-3-dimethoxymethyl-2-(cis-2-pentenyl)glutarate ( $7 \mathrm{~b}, \mathbf{R}^{\prime}=\mathbf{M e}$ ). A mixture of Lindlar catalyst ( 208 mg ) and $7 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 194 \mathrm{mg}, 0.57 \mathrm{mmol}\right)$ in hexane ( 1 mL ) and acetone ( 1 mL ) was stirred under 1 atm of hydrogen at room temperature. After 40 min , hydrogen uptake stopped and the mixture was filtered free from the catalyst and concentrated in vacuo. Column chromatography of the residue $\left(\mathrm{SiO}_{2}\right.$, benzene-AcOEt, $\left.5 / 1\right)$ gave $\mathbf{7 b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 195 \mathrm{mg}\right.$, $100 \%)$, bp $82-87^{\circ} \mathrm{C}(0.14 \mathrm{~mm}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.95\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right)$, $1.76-2.32\left(\mathrm{~m}, 5, \mathrm{CH}_{3} \mathrm{CO}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.37-2.86\left(\mathrm{~m}, 4, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$ ), 2.95-3.50 (m, 7, $\left.\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}\right), 3.66,3.71\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{O}\right), 4.27$ ( $\mathrm{m}, 1, \mathrm{OCHO}$ ), 4.82-5.77 (m, 2, $\mathrm{HC}=\mathrm{CH}$ ); IR (neat) $2835\left(\mathrm{CH}_{3} \mathrm{O}\right)$, $1733(\mathrm{C}=0), 1708 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; MS m$/ e$ (rel intensity) $344\left(\mathrm{M}^{+}\right.$, 0.33 ), 313 (27), 312 (12), 270 (14), 269 (48), 253 (24), 242 (28), 238 (11), 237 (30), 221 (15), 209 (14), 207 (11), 183 (35), 181 (14), 160 (13), 153 (29), 130 (50), 101 (18), 75 (100).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{7}: \mathrm{C}, 59.29 ; \mathrm{H}, 8.19$. Found: $\mathrm{C}, 59.14 ; \mathrm{H}$, 8.44.

5-Methoxycarbonyl-4-methoxycarbonylmethyl-5-(2-pent-ynyl)-2-cyclopentenone ( $10 \mathrm{a}, \mathrm{R}^{\prime}=\mathbf{M e}$ ). A solution of $7 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$, $53 \mathrm{mg}, 0.15 \mathrm{mmol}$ ) in THF ( 2 mL ) and aqueous $1 \% \mathrm{HClO}_{4}(2 \mathrm{~mL})$ was stirred for 12 h at $26-28^{\circ} \mathrm{C}$. The solution was neutralized with aqueous $\mathrm{NaHCO}_{3}$ and concentrated to ca. 2 mL of total volume under reduced pressure. The residue was poured into brine and extracted with AcOEt. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo to give the crude aldehyde $9 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 50 \mathrm{mg}\right)$ : ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 9.65$ (CHO); IR (neat) 2841 (CHO), 1733, $1716 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. Without further purification, the oily product was subjected to the following cyclization reaction. A stirred mixture of 9 a ( 50 mg ) in a mixed solution of $\mathrm{AcOH}(0.1 \mathrm{~mL})$, piperidine ( 0.1 mL ), and benzene ( 25 mL ) was refluxed for 6 h . After cooling to room temperature most of the solvent was removed by a rotary evaporator. The residue was diluted with $\mathrm{AcOEt}(20 \mathrm{~mL})$, washed with $10 \% \mathrm{HCl}$, aqueous $\mathrm{NaHCO}_{3}$, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Column chromatography of the residue $\left(\mathrm{SiO}_{2}\right.$, benzene- $\mathrm{AcOEt}, 12 / 1$ ) gave $10 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 24 \mathrm{mg}, 56 \%\right)$. From the next running fraction, $7 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 4 \mathrm{mg}\right)$ was recovered. The cyclopentenone $10 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ boiled at $110-115{ }^{\circ} \mathrm{C}(0.15 \mathrm{~mm})$ : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.05\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.80-2.30\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right)$, 2.34-2.86 (m, 4, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, \mathrm{CH}_{2} \mathrm{CO}$ ), 2.86-3.50 (m, 1, CH), 3.61, 3.67 $\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{O}\right), 6.14(\mathrm{dd}, 1, J=6 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCO}), 7.59$ (dd, $1, J=6 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CCO}$ ); IR (neat) $1732,1710(\mathrm{C}=\mathrm{O}), 1595$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}) ; \mathrm{MS} m / e$ (rel intensity) $279\left(\mathrm{M}^{+}+1,29\right), 278\left(\mathrm{M}^{+}, 100\right)$, 247 (60), 246 (44), 219 (97), 215 (23), 205 (77), 189 (19), 187 (39), 179 (33), 159 (66), 147 (24), 145 (26), 131 (36), 117 (23), 115 (23), 91 (26).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}$ : $\mathrm{C}, 64.74 ; \mathrm{H}, 6.52$. Found: $\mathrm{C}, 64.64 ; \mathrm{H}$, 6.30 .

5-Methoxycarbonyl-4-methoxycarbonylmethyl-5-(cis-2-pentenyl)-2-cyclopentenone (10b, $\mathbf{R}^{\prime}=\mathbf{M e}$ ). Method A. A solution of 7 b ( $\mathrm{R}^{\prime}=\mathrm{Me}, 250 \mathrm{mg}, 0.73 \mathrm{mmol}$ ) in THF ( 3 mL ) and aqueous $1.5 \%$ $\mathrm{HClO}_{4}(2 \mathrm{~mL})$ was stirred for 12 h at $26-28^{\circ} \mathrm{C}$. The mixture was neutralized with aqueous $\mathrm{NaHCO}_{3}$ and concentrated to ca. 2 mL of total volume under reduced pressure. The workup of the residue was similar to that employed for the preparation of $10 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ described above, giving $9 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 248 \mathrm{mg}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 9.56$, 9.65 (CHO); IR (neat) $1735,1717 \mathrm{~cm}^{-1}(\mathrm{C}=0)$. Without further purification, the oily product was subjected to the following cyclization reaction. A mixture of $9 b\left(R^{\prime}=\mathrm{Me}, 248 \mathrm{mg}\right)$ in a mixed solution of $\mathrm{AcOH}(0.1 \mathrm{~mL})$ and piperidine $(0.1 \mathrm{~mL})$ in benzene ( 30 mL ) was refluxed for 6 h under stirring. After workup in the usual manner as described above there was obtained $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 105 \mathrm{mg}, 52 \%\right)$ after
chromatography ( $\mathrm{SiO}_{2}$, benzene- $\mathrm{AcOEt}, 12 / 1$ ). From the next running fraction, $\mathbf{7 b}$ ( $\mathbf{R}^{\prime}=\mathrm{Me}, 5.4 \mathrm{mg}$ ) was recovered. The cyclopentenone 10b $\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ boiled at $81-85^{\circ} \mathrm{C}(0.005 \mathrm{~mm}):{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.97(\mathrm{t}$, $3, \mathrm{CH}_{3}$ ), $2.05\left(\mathrm{q}, 2, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.27-3.51\left(\mathrm{~m}, 5, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CO}, \mathrm{CH}\right), 3.62,3.66\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{O}\right), 4.76-5.75(\mathrm{~m}, 2, \mathrm{HC}=\mathrm{CH}), 6.09$ (dd, $1, J=5 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCO}), 7.47(\mathrm{dd}, 1, J=5 \mathrm{~Hz}, J=2 \mathrm{~Hz}$, $\mathrm{HC}=\mathrm{CCO}$ ); IR (neat) $1736,1710(\mathrm{C}=0), 1597 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}: \mathrm{C}, 64.27 ; \mathrm{H}, 7.19$. Found: $\mathrm{C}, 64.07 ; \mathrm{H}$, 7.35.

Method B. The cyclopentenone 10 b ( $\mathrm{R}^{\prime}=\mathrm{Me}$ ) was prepared by hydrogenation of $10 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 45 \mathrm{mg}, 0.16 \mathrm{mmol}\right)$ in hexane ( 1 mL ) and acetone ( 0.1 mL ) using Lindlar catalyst ( 68 mg ). Column chromatography ( $\mathrm{SiO}_{2}$, benzene-AcOEt, $5 / 1$ ) of the product gave $10 \mathrm{~b}\left(\mathrm{R}^{\prime}\right.$ $=\mathrm{Me}, 43 \mathrm{mg}, 95 \%$ ), whose spectral data were identical with those of the specimen obtained in the preceding experiment.

2-Methoxycarbonyl-3-methoxycarbonylmethyl-2-(cis-2pentenyl) cyclopentanol (13b, $\mathbf{R}^{\prime}=\mathbf{M e}$ ) from $10 \mathrm{~b}\left(\mathbf{R}^{\prime}=\mathbf{M e}\right)$. A solution of $10 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 11 \mathrm{mg}, 0.039 \mathrm{mmol}\right)$ and $\mathrm{NaBH}_{4}(3.0 \mathrm{mg}$, 0.079 mmol ) in $\mathrm{MeOH}(2 \mathrm{~mL})$ was refluxed at ca. $80^{\circ} \mathrm{C}$ for 1 h . The solution was allowed to cool to room temperature and then 4 drops of AcOH was added. After stirring for an additional 30 min , the solution was concentrated in vacuo and the residue was passed through a short silica gel column ( $2 \times 0.9 \mathrm{~cm}$, benzene-AcOEt, $2 / 1,15 \mathrm{~mL}$ ) Evaporation of the solvents followed by column chromatography ( $\mathrm{SiO}_{2}$, benzene-AcOEt, $5 / 1$ ) gave $13 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 8.9 \mathrm{mg}, 80 \%\right.$ ): bp $74-78$ ${ }^{\circ} \mathrm{C}(0.01 \mathrm{~mm}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.93\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.40-2.90(\mathrm{~m}, 12)$, 3.59, $3.66\left(2 \mathrm{~s}, 6, \mathrm{CH}_{3} \mathrm{O}\right), 3.85-4.12(\mathrm{~m}, 1, \mathrm{CHO}), 4.95-5.75(\mathrm{~m}, 2$, $\mathrm{HC}=\mathrm{CH}$ ); IR (neat) $3506(\mathrm{OH}), 1727 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5}$ : C, 63.36; $\mathrm{H}, 8.51$. Found: $\mathrm{C}, 63.47 ; \mathrm{H}$, 8.78 .

2-Methoxycarbonyl-3-methoxycarbonylmethyl-2-(2-pentynyl) cyclopentanol (13a, $\left.\mathbf{R}^{\prime}=\mathbf{M e}\right)$. A solution of $10 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 20.0\right.$ $\mathrm{mg}, 0.072 \mathrm{mmol}$ ) and $\mathrm{NaBH}_{4}(5.4 \mathrm{mg}, 0.143 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was refluxed at $80^{\circ} \mathrm{C}$ for 1 h under $\mathrm{N}_{2}$. After the usual workup, there was obtained $13 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 17.5 \mathrm{mg}, 86.3 \%\right)$ : bp $70-75^{\circ} \mathrm{C}(0.005 \mathrm{~mm})$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.11\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.38-2.95(\mathrm{~m}, 12), 3.60,3.68(2 \mathrm{~s}, 6$, $\mathrm{CH}_{3} \mathrm{O}$ ), 3.90-4.45 (m, l, HCO); IR (neat) $3433(\mathrm{OH}), 1725 \mathrm{~cm}^{-1}$ ( $\mathrm{C}=0$ ).
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5}: \mathrm{C}, 63.81 ; \mathrm{H}, 7.85$. Found: $\mathrm{C}, 63.90 ; \mathrm{H}$, 8.02 .

The Cyclopentanol 13b ( $\mathbf{R}^{\prime}=\mathbf{M e}$ ) from 13a $\left(\mathbf{R}^{\prime}=\mathbf{M e}\right)$. A mixture of $13 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 28 \mathrm{mg}, 0.01 \mathrm{mmol}\right)$ and Lindlar catalyst ( 44 mg ) in hexane ( 1 mL ) and acetone ( 0.1 mL ) was stirred under 1 atm of hydrogen at room temperature. After 1 h , the hydrogen uptake stopped and the mixture was filtered free from the catalyst and concentrated in vacuo. Column chromatography of the residue ( $\mathrm{SiO}_{2}$, benzene-AcOEt, $5 / 1$ ) gave $13 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 21.5 \mathrm{mg}, 77 \%\right)$, bp $74-78^{\circ} \mathrm{C}$ ( 0.01 mm ), which was identical in all respects with those of the product obtained in the preceding experiment.

2-Methoxycarbonyl-3-methoxycarbonylmethyl-2-(cis-2pentenyl)cyclopentanone ( $14 \mathrm{~b}, \mathrm{R}^{\prime}=\mathrm{Me}$ ). To a solution of $13 \mathrm{~b}\left(\mathrm{R}^{\prime}\right.$ $=\mathrm{Me}, 6.8 \mathrm{mg}, 0.024 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}), 100 \mathrm{mg}$ of aqueous 2 M chromic acid was added dropwise. The mixture was stirred at room temperature for 12 h under a heterogeneous system. The yelloworange solution was taken up in AcOEt and washed with brine aqueous $\mathrm{NaHCO}_{3}$, and brine. The AcOEt layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Column chromatography $\left(\mathrm{SiO}_{2}\right.$, benzene- AcOEt , $10 / 1$ ) of the residue gave 14 b ( $\mathrm{R}^{\prime}=\mathrm{Me}, 5.7 \mathrm{mg}, 84 \%$ ), bp $73-77^{\circ} \mathrm{C}$ ( 0.007 mm ) [lit. $\left.{ }^{2 \mathrm{~d}} \mathrm{bp} 84.0-85.0^{\circ} \mathrm{C}(0.015 \mathrm{~mm})\right]$, whose spectral data were identical with those of an authentic sample.

Methyl dl-Jasmonate (1b) from 14b ( $\mathbf{R}^{\prime}=\mathbf{M e}$ ). Demethoxycarbonylation of $14 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}, 130 \mathrm{mg}, 2.2 \mathrm{mmol}\right)$ in aqueous $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{NaCl}$ at $176^{\circ} \mathrm{C}$ for 4 h gave 1 b ( $69 \mathrm{mg}, 86 \%$ ), whose spectral data (IR, ${ }^{1} \mathrm{H}$ NMR, and MS) were identical with those of an authentic sample.

2-Methoxycarbonyl-3-methoxycarbonylmethyl-2-(2-pentynyl)cyclopentanone ( $14 \mathrm{a}, \mathrm{R}^{\prime}=\mathbf{M e}$ ). To a solution of $13 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$, $17 \mathrm{mg}, 0.06 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, aqueous 2 M chromic acid (ca. 0.2 mL ) was added dropwise and the mixture was stirred at room temperature for 12 h . After the usual workup, there was obtained 14a $\left(\mathrm{R}^{\prime}=\mathrm{Me}, 12 \mathrm{mg}, 71 \%\right)$, bp $78-82^{\circ} \mathrm{C}(0.008 \mathrm{~mm})$ [lit. ${ }^{2 \mathrm{~d}} \mathrm{bp} 78-80^{\circ} \mathrm{C}$ $(0.02 \mathrm{~mm})$ ], whose IR and ${ }^{1} \mathrm{H}$ NMR spectra were identical with those of an authentic sample.

2-Methoxycarbonyl-3-methoxycarbonylmethyl-2-pentyl-cyclopentan-1-one (14c, $\mathbf{R}^{\prime}=\mathbf{M e}$ ). A mixture of $10 b\left(R^{\prime}=\mathrm{Me}, 32\right.$ $\mathrm{mg}, 0.11 \mathrm{mmol}$ ) and palladium on charcoal ( 60 mg ) in $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred under 1 atm of hydrogen at room temperature. After 50 $\min$, hydrogen uptake stopped and the mixture was filtered free from catalyst and concentrated. Column chromatography of the residue ( $\mathrm{SiO}_{2}$, benzene-AcOEt, $5 / 1$ ) gave $14 \mathrm{c}(31 \mathrm{mg}, 97 \%)$, whose IR and ${ }^{1} \mathrm{H}$

NMR spectra were identical with those of an authentic sample. ${ }^{2 \mathrm{~d}}$
Methyl 4-tert-Butoxycarbonyl-3-dimethoxymethyl-5-oxohexanoate ( $5, \mathbf{R}^{\prime}=\boldsymbol{t}$ - Bu ). A mixture of $4(Z)(1.66 \mathrm{~g}, 10.4 \mathrm{mmol}), \mathrm{KF}$ ( $2.0 \mathrm{~g}, 34.4 \mathrm{mmol}$ ), and $\mathrm{AcCH}_{2} \mathrm{CO}_{2}-t-\mathrm{Bu}(1.81 \mathrm{~g}, 11.5 \mathrm{mmol})$ in $t$ $\mathrm{BuOH}(2 \mathrm{~mL}$ ) was vigorously stirred for 2 days under reflux. After the same workup as described for $5\left(R^{\prime}=M e\right)$, there was obtained $5\left(R^{\prime}\right.$ $=t \cdot \mathrm{Bu}, 2.86 \mathrm{~g}, 86 \%)$ : bp $72-76^{\circ} \mathrm{C}(0.014 \mathrm{~mm}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.43$ (br s, $9, \mathrm{CH}_{3}$ ), 2.17 ( $\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{CO}$ ), $2.30-2.60\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{CO}\right.$ ), 2.60-3.19 ( $\mathrm{m}, \mathrm{l}, \mathrm{AcCHCO}$ ), $3.19-3.38\left(\mathrm{~m}, 6, \mathrm{CH}_{3} \mathrm{O}\right), 3.58-3.72\left(\mathrm{~m}, 3, \mathrm{CH}_{3} \mathrm{OCO}\right)$, 3.19-3.72 (m, 1, CH), 4.31 (t, $1, J=5 \mathrm{~Hz}, \mathrm{OCHO}$ ); IR (neat) 1736 ( $\mathrm{C}=0$ ), $1715 \mathrm{~cm}^{-1}$ (shoulder, $\mathrm{C}=0$ ).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{7}: \mathrm{C}, 56.59 ; \mathrm{H}, 8.23$. Found: $\mathrm{C}, 56.65 ; \mathrm{H}$, 8.13.

5-tert-Butoxycarbonyl-4-methoxycarbonylmethyl-5-(2-pentynyl)-2-cyclopentenone (10a, $\mathbf{R}^{\prime}=\boldsymbol{t}$ - Bu ) from $5\left(\mathbf{R}^{\prime}=t-\mathrm{Bu}\right)$ via 7a. A mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 9.99 \mathrm{mmol}), 5\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}, 450 \mathrm{mg}\right.$, 1.42 mmol ), pentynyl bromide ( $270 \mathrm{mg}, 1.84 \mathrm{mmol}$ ), and KI ( 308 mg , 1.86 mmol ) in acetone ( 30 mL ) was refluxed for 12 h . After the usual workup as described above, there was obtained 478 mg of an oily product, whose ${ }^{1} \mathrm{H}$ NMR spectrum indicated that the product consisted of $7 \mathrm{a}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}, 75 \%\right)$ and $8 \mathrm{a}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}, 13 \%\right)$. Without further purification, the mixture was subjected to the following cyclization reaction. A solution of the mixture 7a and 8 a ( $60 \mathrm{mg}, 0.16 \mathrm{mmol}$ ) in THF ( 3 mL ) and aqueous $1.5 \% \mathrm{HClO}_{4}(2.5 \mathrm{~mL})$ was stirred for 12 h at $28-29^{\circ} \mathrm{C}$. The workup of the reaction mixture was similar to that employed for the preparation of $10 a\left(R^{\prime}=M e\right)$, giving an oily material ( 79 mg ), which was subjected to reflux in a mixed solution of AcOH ( 0.1 mL ), piperidine ( 0.1 mL ), and benzene ( 5 mL ) for 4 h . Upon evaporation of the solvent, the residue was worked up in the usual manner as described above. After chromatography ( $\mathrm{SiO}_{2}$, benzene-hexane-AcOEt, $6 / 3 / 1$ ), there was obtained 22 mg ( $48 \%$ based on 7 a , $\left.\mathrm{R}^{\prime}=t-\mathrm{Bu}\right)$ of $10 \mathrm{a}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right)$ : $\mathrm{bp} 82-86^{\circ} \mathrm{C}(0.006 \mathrm{~mm}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.02\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.37$ (br s, $9, \mathrm{CH}_{3}$ ), 1.76-2.73(m, $6, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$, $\mathrm{CH}_{2} \mathrm{CO}$ ), 3.33-3.58(m, 1, CH), $3.66\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 6.10(\mathrm{dd}, 1, J=5$, $2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCO}$ ), 7.50 (dd, $1, J=5,2 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CCO}$ ); IR (neat) 1734 , $1711(\mathrm{C}=\mathrm{O}), 1595 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}$ : C, 67.48; $\mathrm{H}, 7.55$. Found: $\mathrm{C}, 67.36 ; \mathrm{H}$, 7.70 .

5-tert-Butoxycarbonyl-4-methoxycarbonylmethyl-5-(cis2 -pentenyl)-2-cyclopentenone ( $10 \mathrm{~b}, \mathrm{R}^{\prime}=\boldsymbol{t}-\mathrm{Bu}$ ). Hydrogenation of $10 \mathrm{a}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}, 69 \mathrm{mg}, 0.22 \mathrm{mmol}\right)$ in hexane $(0.5 \mathrm{~mL})$ and acetone $(0.5 \mathrm{~mL})$ in the presence of Lindlar catalyst ( 320 mg ) afforded 10 b ( $\mathrm{R}^{\prime}$ $=t-\mathrm{Bu}, 70 \mathrm{mg}, 100 \%)$ : bp $81-84^{\circ} \mathrm{C}(0.005 \mathrm{~mm}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.97$ ( $\mathrm{t}, 3, \mathrm{CH}_{3}$ ), $1.42\left(\mathrm{~s}, 9, \mathrm{CH}_{3}\right), 2.05\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$ ), 2.34-2.71 $\left(\mathrm{m}, 4, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 3.26(\mathrm{~m}, 1, \mathrm{CH}), 3.66\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 4.79-$ $5.69(\mathrm{~m}, 2, \mathrm{HC}=\mathrm{CH}), 6.09(\mathrm{dd}, 1, J=5 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CHCO}), 7.50$ (dd, $1, J=5 \mathrm{~Hz}, J=2 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CCO}$ ); IR (neat) $1734,1712(\mathrm{C}=\mathrm{O}$ ), $1596 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5}$ : $\mathrm{C}, 67.06 ; \mathrm{H}, 8.13$. Found: $\mathrm{C}, 66.91 ; \mathrm{H}$, 8.36 .

Methyl Dehydrojasmonate (2b). A mixture of 10 b ( $\mathrm{R}^{\prime}=t-\mathrm{Bu}$, $54 \mathrm{mg}, 0.17 \mathrm{mmol}$ ) and a catalytic amount of anhydrous $p$-toluenesulfonic acid in benzene ( 2 mL ) was refluxed for 20 min . The mixture was quenched with $\mathrm{NaHCO}_{3}$ (powder, 10 mg ). After removal of the solvent under reduced pressure, the residue was chromatographed ( $\mathrm{SiO}_{2}$, benzene-AcOEt, $10 / \mathrm{I}$ ) to give $\mathbf{2 b}$ ( $31 \mathrm{mg}, 83 \%$ ): bp $88-92{ }^{\circ} \mathrm{C}(2.5$ $\mathrm{mm}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.95\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.88-3.18(\mathrm{~m}, 8), 3.70(\mathrm{~s}, 3$, $\mathrm{CH}_{3} \mathrm{O}$ ), 4.95-5.75 (m, 2, $\mathrm{HC}=\mathrm{CH}$ ), $6.15(\mathrm{dd}, 1, J=6,1.6 \mathrm{~Hz}, \mathrm{C}=$ CHCO ), 7.60 (dd, $J=6,2 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CCO}$ ); ${ }^{13} \mathrm{C}$ NMR (multiplicity, carbon no.) $\delta 14.1$ ( $\mathrm{q}, 12$ ), 20.5 ( $\mathrm{t}, 11$ ), 27.7 (t, 8 ), 38.1 ( $\mathrm{t}, 2$ ), 43.2 (d, 3), 51.0 (d, 7), 51.8 (q, 13), 124.4 (d, 9), 133.7 (d, 5 or 10), 134.4 (d, 10 or 5 ), 165.3 (d, 4), $171.7(\mathrm{~s}, 1), 210.0(\mathrm{~s}, 6)$; IR (neat) $1736,1706(\mathrm{C}=0)$, $1599 \mathrm{~cm}^{-1}$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$ : $\mathrm{C}, 70.24 ; \mathrm{H}, 8.16$. Found: $\mathrm{C}, 70.06 ; \mathrm{H}$, 8.19.

3-Methoxycarbonylmethyl-2-(cis-2-pentenyl)cyclopentanol (15) from $2 \mathbf{b}$. A solution of $\mathbf{2 b}(18 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(9 \mathrm{mg}$, 0.2 mmol ) in $\mathrm{MeOH}(2 \mathrm{~mL})$ was refluxed at $80^{\circ} \mathrm{C}$ for 1 h . After the usual workup, there was obtained 15 ( $16 \mathrm{mg}, 87 \%$ ) after chromatography $\left(\mathrm{SiO}_{2}\right.$ benzene-AcOEt, $\left.5 / 1\right)$ : bp $63-67^{\circ} \mathrm{C}(0.01 \mathrm{~mm}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.99\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.22-2.88(\mathrm{~m}, 13), 3.61\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 3.67-4.22$ (m, 1, CHO), 5.20-5.52 (m, 2, HC=CH); IR (neat) $3400(\mathrm{OH}), 1735$ ( $\mathrm{C}=\mathrm{O}$ ), $1722 \mathrm{~cm}^{-1}$ (shoulder).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 68.99 ; \mathrm{H}, 9.80$. Found: $\mathrm{C}, 69.00 ; \mathrm{H}$, 9.75

Methyl dl-Jasmonate ( 1 b ) from 15. To a solution of 15 ( 15 mg , 0.066 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ aqueous 2 M chromic acid ( 0.2 mL ) was added dropwise. The mixture was stirred at $18-20^{\circ} \mathrm{C}$ for 12 h and then worked up in the usual manner as described for the Jones oxidation of 13 to give $\mathbf{1 b}(10 \mathrm{mg}, 68 \%)$ after chromatography $\left(\mathrm{SiO}_{2}\right.$, benzene-
hexane-THF, $11 / 5 / 1)$ : bp $92-96{ }^{\circ} \mathrm{C}(2.7 \mathrm{~mm})$ [lit. ${ }^{2 \mathrm{~d}}$ bp $110-112^{\circ} \mathrm{C}(5$ $\mathrm{mm})$ ].

2-tert-Butoxycarbonyl-3-methoxycarbonylmethyl-2-(cis-
2-pentenyl)cyclopentanol (13b, $\left.\mathbf{R}^{\prime}=t-B u\right)$. A solution of $10 b\left(R^{\prime}\right.$ $=t-\mathrm{Bu}, 37 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(6 \mathrm{mg}, 0.16 \mathrm{mmol})$ in MeOH $(1.5 \mathrm{~mL})$ was refluxed for 1 h . The mixture was quenched with AcOH ( 0.1 mL ) and concentrated in vacuo. Column chromatography ( $\mathrm{SiO}_{2}$, benzene-AcOEt, $5 / 1$ ) of the residue gave $13 \mathrm{~b}\left(\mathrm{R}^{\prime}=t\right.$ - $\mathrm{Bu}, 36 \mathrm{mg}, 96 \%$ ): bp $75-79^{\circ} \mathrm{C}(0.005 \mathrm{~mm}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.98\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.20-2.69$ ( $\mathrm{m}, 21$ ), $3.60\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 3.96(\mathrm{~m}, 1, \mathrm{CHO}), 5.21-5.54(\mathrm{~m}, 2, \mathrm{HC}=\mathrm{CH})$; IR (neat) $3509(\mathrm{OH}), 1721 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{5}$ : C, $66.23 ; \mathrm{H}, 9.26$. Found: $\mathrm{C}, 66.28 ; \mathrm{H}$, 9.50 .

2-tert-Butoxycarbonyl-3-methoxycarbonylmethyl-2-(cis-2-pentenyl)cyclopentanone ( $14 \mathrm{~b}, \mathrm{R}^{\prime}=\boldsymbol{t}-\mathrm{Bu}$ ). To a solution of $\mathbf{1 3 b}$ ( $\mathrm{R}^{\prime}=t-\mathrm{Bu}, 15 \mathrm{mg}, 0.046 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}$ ) was added dropwise 2 M chromic acid $(0.1 \mathrm{~mL})$. The mixture was stirred at $16-20^{\circ} \mathrm{C}$ for 12 h and then diluted with AcOEt. Upon the usual workup as described for the oxidation of 15 , there was obtained $14 \mathrm{~b}\left(\mathrm{R}^{\prime}=t \cdot \mathrm{Bu}, 10\right.$ $\mathrm{mg}, 67 \%)$ after column chromatography ( $\mathrm{SiO}_{2}$, benzene-hexaneAcOEt, $10 / 5 / 1$ ): bp $79-83{ }^{\circ} \mathrm{C}(0.01 \mathrm{~mm}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 0.97(\mathrm{t}, 3$, $\mathrm{CH}_{3}$ ), 1.29-2.79 (m, 11), $1.45\left(\mathrm{~s}, 9, \mathrm{CH}_{3}\right), 3.64\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{O}\right), 4.94-5.59$ ( $\mathrm{m}, 2, \mathrm{HC}=\mathrm{CH}$ ); IR (neat) $1738 \mathrm{~cm}^{-1}(\mathrm{C}=0$ ).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{5}$ : $\mathrm{C}, 66.64 ; \mathrm{H}, 8.70$. Found: $\mathrm{C}, 66.87 ; \mathrm{H}$, 8.94 .

Methyl dl-Jasmonate (1b) from 14b ( $\mathrm{R}^{\prime}=\boldsymbol{t}$ - Bu ). A solution of $\mathbf{1 4 b}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}, 7.2 \mathrm{mg}, 0.022 \mathrm{mmol}\right)$ in benzene ( 1 mL ) containing a catalytic amount of $p$-toluenesulfonic acid was refluxed for 20 min . After the usual workup, the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$, benzene-AcOEt, 10/1) to give 1 b ( $4.5 \mathrm{mg}, 90 \%$ ): ${ }^{13} \mathrm{C}$ NMR (multiplicity, carbon no.) $\delta 14.1(\mathrm{q}, 12), 20.6(\mathrm{t}, 11), 25.5(\mathrm{t}, 4), 27.2(\mathrm{t}, 8), 37.8$ ( $\mathrm{t}, 2$ or 5 ), $38.0(\mathrm{~d}, 3), 38.8(\mathrm{t}, 5$ or 2$), 51.6(\mathrm{q}, 13), 54.0(\mathrm{~d}, 7), 124.9(\mathrm{~d}$, 9), $134.0(\mathrm{~d}, 10), 172.5(\mathrm{~s}, 1), 218.8(\mathrm{~s}, 6)$; IR and ${ }^{1} \mathrm{H}$ NMR data were identical with those of an authentic sample.

Registry No.-1b, 20073-13-6; 2b, 63569-04-0; (E)-4, 32815-00-2; (Z) $-4,75314-31-5 ; 5\left(\mathrm{R}^{\prime}=\mathrm{Me}\right), 63528 \cdot 42-7 ; 5\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right), 63528-43-8 ;$ $7 \mathrm{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right), 63528-44-9 ; 7 \mathrm{a}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right), 63528-45-0 ; 7 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$, $63528-46-1 ; 8 \mathbf{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right), 63528-47-2 ; 8 \mathrm{a}\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right), 63528-48-3 ; 9 \mathrm{a}$ $\left(\mathrm{R}^{\prime}=\mathrm{Me}\right), 63528-49-4 ; 9 \mathrm{~b}\left(\mathrm{CR}^{\prime}=\mathrm{Me}\right), 63528-50-7$; 10a $\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$,
$63528-51-8 ; 10 \mathrm{a}\left(\mathrm{CR}^{\prime}=t-\mathrm{Bu}\right), 63528-52-9 ; 10 \mathrm{~b}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right), 63528-53-0$; 10b $\left(\mathrm{R}^{\prime}=t-\mathrm{Bu}\right), 63528-54-1 ; 13 \mathbf{a}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right), 63528-55-2 ; 13 \mathrm{~b}\left(\mathrm{R}^{\prime}=\right.$ Me ), 63534-37-2; 13b ( $\mathrm{R}^{\prime}=t-\mathrm{Bu}$ ), 63528-56-3; 14a ( $\mathrm{R}^{\prime}=\mathrm{Me}$ ), 55254-74-5; 14b ( $\mathrm{R}^{\prime}=\mathrm{Me}$ ), 55254-73-4; 14b ( $\mathrm{R}^{\prime}=t-\mathrm{Bu}$ ), 63528-57-4; 15, 51388-61-5; $\mathrm{AcCH}_{2} \mathrm{CO}_{2} \mathrm{Me}$, 105-45-3; pentynyl bromide, 16400-32-1; $\mathrm{AcCH}_{2} \mathrm{CO}_{2}-t$ - $\mathrm{Bu}, 1694-31$-1.

## References and Notes

(1) Recent reviews of jasmonoids syntheses: (a) D. Joulain, Parfurss, Cosmet., Arômes, 53 (1976); (b) S. Torii and H. Tanaka, Koryo, 114, 41 (1976); (c) T-L. Ho, Synth. Commun., 4, 265 (1974); (d) R. A. Ellison, Synthesis, 397 (1973).
(2) (a) A. E. Greene and P. Crabbé, Tetrahedron Lett., 4867 (1976); (b) F. Johnson, K. G. Paul, and D. Favara, Ger. Offen 2508295 (Cl, C07C), Sept. 04, 1975; Chem. Abstr., 84, 59783 v (1976); (c) D. Tunemoto, T. Umemoto, Y. Takahatake, and K. Kondo, "The Symposium papers of 20th Symposium on the Chemistry of Natural Products"', Sendai, Japan, 1976, p 357; (d) S. Torii, H. Tanaka, and T. Mandai, J. Org. Chem., 40, 2221 (1975), and references cited therein.
(3) H. Tanaka, Y. Kobayasi, and S. Torii, J. Org. Chem., 41, 3482 (1976).
(4) (a) A. J. Parker, Adv. Org. Chem., 5, 20 (1965); (b) J. Pless, J. Org. Chem., 39, 2644 (1974); (c) I. Kuwajima, T. Murofushi, and E. Nakamura, Synthesis, 602 (1976).
(5) H. Lindlar and R. Dubuis, Org. Synth., 46, 89 (1966).
(6) The hydride reduction of 2-cyclopenten-1-ones with various reducing agents has been discussed in the following literatures: $\mathrm{LiAIH}_{4} / \mathrm{THF}, \mathrm{Li}(\mathrm{RO})_{3} \mathrm{AlH} /$ THF, $\mathrm{NaBH}_{4} /$ EtOH, (a) H. C. Brown and H. M. Hess, J. Org. Chem., 34, 2206 (1969); AlH $_{3} /$ benzene, (i-Pr) 2 AlH/benzene, (b) K. E. Wilson, R. T. Seidner and S. Masamune, Chem. Commun., 213 (1970); $\mathrm{K}(\mathrm{sec}-\mathrm{Bu})_{3} \mathrm{BH} / \mathrm{THF}$, (c) J. M. Fortunato and B. Ganem, J. Org. Chem., 41, 2194 (1976); 9-borabicyclo[3.3.1]nonane/THF, (d) S. Krishnamurthy and H. C. Brown, J. Org. Chem., 42, 1197 (1977)
(7) B. Ganem, J. Org. Chem., 40, 146 (1975)
(8) P. Ducos and F. Rouessac, Tetrahedron, 29, 3233 (1973).
(9) R. Kaiser and D. Lamparsky, Tetrahedron Lett., 3413 (1974)
(10) B. D. Mookherjee, R. R. Patel, R. W. Trenkle, and W. O. Ledig, int. Congr, Essent. Oils, Pap., 6th, 150 (1974); Chem. Abstr., 85, 5236w (1976).
(11) The ratio of $\mathbf{2 b}$ to $\mathbf{3 b}$ varied from $2: 1$ to $1: 5$, depending on the experimental conditions, e.g., prolonged heating, reaction temperature, and additives, conc.
(12) A. Wisser, J. Org. Chem., 42, 356 (1977).
(13) In the previous paper, we described that the oxidation of 1,2 -cis-2,3-cis-3-methoxycarbonylmethyl-2-(cis-2-pentenyl)cyclopenten-1-ol with Jones reagent gave methyl dt-2-epijasmonate without epimerization: H, Tanaka and S. Toril, J. Org. Chem., 40, 462 (1975).

# Cyclodimerization of Styrene 

Arnold R. Taylor, ${ }^{1 a, b, c}$ Gary W. Keen, ${ }^{1 c}$ and Edmund J. Eisenbraun*1b,d

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74074 and
Research and Development Department, Continental Oil Company, Ponca City, Oklahoma 74601
Received November 9, 1976

The cyclodimerization of styrene in the presence of sulfuric acid or Amberlyst-15 resin yields a $1: 1$ mixture of cisand trans-1-methyl-3-phenylindan (1a and 1 b ) via ( $E$ )-1,3-diphenyl-1-butene (4). 1-Methyl-3-phenylindene ( 8 ) and 3-methyl-1-phenylindene (9) were synthesized and converted to 1 a and 1 b . Base-catalyzed equilibration of 1 a and 1 b as well as 8 and 9 gave $1 \mathrm{a}: 1 \mathrm{~b}(80: 20)$ and $8: 9$ (30:70), respectively.
cis- and trans-1-methyl-3-phenylindan ( $\mathbf{1 a}$ and $\mathbf{1 b}$ ) can be obtained by cyclodimerization of styrene (2) with sulfuric acid, ${ }^{2 \mathrm{a}-\mathrm{g}}$ phosphoric acid, ${ }^{3 \mathrm{a}-\mathrm{d}}$ polyphosphoric acid (PPA), ${ }^{3 \mathrm{~b}}$ alumina-silica, ${ }^{3 \mathrm{a}}$ perchloric acid, ${ }^{3 \mathrm{~d}}$ chlorosulfonic acid, ${ }^{3 \mathrm{~d}}$ or by passing styrene over hot promoted $\mathrm{B}_{2} \mathrm{O}_{3} .{ }^{4}$ This reaction may proceed through the cation 3, which can eliminate a proton to form the alkene 4, cyclize to 1 a and 1 b , or yield polymer, as shown in Scheme I.

The low-temperature dimerization kinetics of 2 to 1 a and 1b have been reported to be second order, whereas hightemperature kinetics are complex. ${ }^{3 \mathrm{~d}}$ Two isomeric forms of 1 have been reported ${ }^{5}$ and identified ${ }^{6}$ as $1 \mathrm{a}, \mathrm{mp} 9.5^{\circ} \mathrm{C}$, and $\mathbf{1 b}, \mathrm{mp} 25.5^{\circ} \mathrm{C}$. It has been reported that $1 \mathrm{a}: 1 \mathrm{~b}$ as a $50: 45$ mixture was converted to a 62:38 ratio by stirring with $10 \%$
$\mathrm{AlBr}_{3}{ }^{7}$ and that la is isomerized to an $82: 18$ ratio of $1 \mathrm{a}: 1 \mathrm{~b}$ with $\mathrm{AlCl}_{3} .{ }^{5}$ The tertiary, twice-benzylic hydrogen of 1 is reported to be more reactive in forming a radical intermediate than the tertiary benzylic hydrogen. ${ }^{8}$
We sought $1 \mathbf{a}$ and $1 \mathbf{1 b}$ in order to study their stereochemistry and clarify their relative thermodynamic stability. The structure and stability of 1 a and 1 l were studied through equilibration experiments and by preparations from indenes. Sulfuric acid, ethylaluminum dichloride $\left(\mathrm{EtAlCl}_{2}\right),{ }^{9}$ and Amberlyst-15 (A-15), ${ }^{10}$ an insoluble sulfonic acid resin, were tested as catalysts for the cyclodimerization reaction. Using A-15 allowed convenient monitoring of this reaction. Samples were periodically withdrawn from the A-15-catalyzed reactions and analyzed by GC. ${ }^{11}$ The linear dimer 4 appears to be

